Decomposition of graphs excluding induced subgraph

Dewi Sintiari
Universitas Pendidikan Ganesha

October 4th, 2022

Terminology

Graphs

Figure: A graph G

- Vertices or nodes (denoted by $V(G)$)
- Edges (denoted by $E(G)$)

Subgraphs

A subgraph of a graph G is a graph H, where $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$.

An induced subgraph of a graph G is a subgraph H obtained from G by deleting some vertices of G. (We say that G contains H.)

Figure: A graph, an induced subgraph, and a non-induced subgraph

Graphs closed under taking induced subgraphs

Hereditary property is a graph property which holds for a graph and is inherited by all its induced subgraphs.

Example
A class of graphs that do not contain a clique on 3 vertices is hereditary.

Definition
A class of graphs is hereditary if it is closed under taking induced subgraphs. (Closed means that if a graph G is in class \mathcal{C}, then for every induced subgraph H of G, the graph H is also in \mathcal{C}.)

Hereditary class of graphs

Any hereditary class can be characterized as the class of graphs that do not contain (or exclude) any graph in some family \mathcal{F}.

- forests $=\left(C_{3}, C_{4}, C_{5}, C_{6}, C_{7}, \ldots\right)$-free
- bipartite graphs $=\left(C_{3}, C_{5}, C_{7}, \ldots\right)$-free
- chordal graphs $=\left(C_{4}, C_{5}, C_{6}, C_{7}, \ldots\right)$-free
- perfect graphs $=\left(C_{3}, \overline{C_{3}}, C_{5}, \overline{C_{5}}, C_{7}, \overline{C_{7}}, \ldots\right)$-free
- P_{4}-free graphs, $\left(P_{4}, C_{4}\right)$-free graphs, etc...
G is F-free if no induced subgraph of G is isomorphic to F; and is \mathcal{F}-free if no induced subgraph of G is isomorphic to each $F \in \mathcal{F}$.

Remark: \mathcal{F} can be a finite/infinite family.

Why forbidding induced subgraphs?

(Possibly) naive answers...

- There are many possibilities to forbid induced subgraphs, so this could lead to publishing many papers.

Why forbidding induced subgraphs?

(Possibly) naive answers...

- There are many possibilities to forbid induced subgraphs, so this could lead to publishing many papers.

Why forbidding induced subgraphs?

In real world, many problems can be formulated as graphs, where:

- vertices represent objects;
- edges represent constraints.

Note:

Removing object is equivalent to removing vertex, which means taking an induced subgraph.

Why forbidding induced subgraphs?

Main concerns:

- How classes of graphs closed under taking induced subgraphs can be described in the most general possible way?
- What properties can be proved about them?
- Are combinatorial problems such as coloring, maximum independent set polynomial-time solvable?

Note:

Many NP-Hard problems (e.g. coloring, maximum independent set) become easy when some configurations are forbidden. (e.g. forests, chordal graphs, perfect graphs).

Graph Decomposition

Decomposition of graph (in general)

A decomposition of a connected graph G is a set of edge-disjoint subgraphs (not necessarily induced) of G, say: $H_{1}, H_{2}, \ldots, H_{n}$, such that

$$
\bigcup_{i} H_{i}=G
$$

The edge-disjoint property implies $\forall i, j, E\left(H_{i}\right) \cap E\left(H_{j}\right)=\emptyset$.

Figure: Decomposition and non-decomposition of a graph

Decomposition of graph

Figure: Cycle decomposition

Figure: Path decomposition

Another kind of decomposition

A graph can be decomposed in many ways and using many kinds of decomposition, depending on how we want to use the decomposition theorem to prove graph properties.

For instance, one can consider that the edge set used to decompose the graph is contained in each connected components of the graph.

Example:

Figure: Decomposition in which the connected components both contains edge $\{a, e\}$

In this case, what we care about is the vertex set that is used to decompose G. Such a vertex set is called cutset of the graph.

Cutset

Let G be a connected graph. A set of vertices $C \subseteq V(G)$ is called a cutset of G if the removal of C from G disconnects G, i.e. $V(G) \backslash C$ induces a disconnected graph.

Figure: $\{a, e\}$ is a cutset of graph G that disconnects the graph into two connected components.

Blocks of decomposition

Let G be a graph, C be a cutset in G, and Q be a component of $G \backslash C$. The graph induced by $V(Q) \cup V(C)$ is called a block of decomposition of $G \backslash C$.

Figure: Blocks of decomposition

Decomposition theorem for a class of graphs

Definition (Decomposition theorem in general...)
A decomposition theorem for a class \mathcal{C} says that every object of \mathcal{C} either:

- belongs to some well-understood basic class; or
- it can be broken into smaller pieces according to some well-described rules.

Decomposition theorem for a class of graphs

More formally, for a class of graphs \mathcal{C}, we define a set of basic graphs \mathcal{C}_{0} and a list of graph decomposition operations \mathcal{L}, s.t. if $G \in \mathcal{C}$:

- either $G \in \mathcal{C}_{0}$; or
- G can be broken down to smaller graphs G^{\prime} and $G^{\prime \prime}$ using an operation in \mathcal{L} (here we usually use the so-called cutset).

Note:

If furthermore, every G can be built from smaller graphs G^{\prime} and $G^{\prime \prime}$ belonging to \mathcal{C} using a compositions operation \mathcal{L}^{\prime} (the "reverse" operations of \mathcal{L}, then it is a structure theorem).

Example of decomposition

$C \subsetneq V(G)$ is a clique cutset of a connected graph G if C is a cutset of G and C induces a complete graph.
Clique cutset decomposition (Tarjan, 1985)

Example of decomposition theorem

Figure: Decomposition theorem

How decomposition is used for algorithms
The graph-decomposition based algorithm is usually done through the divide-and-conquer approach.

Figure: Illustration of divide-and-conquer algorithm

How decomposition is used for graph recognition?

Given a class of graphs \mathcal{C}. How do we decide if a given input graph G is in \mathcal{C} ?

1. Get a decomposition theorem of \mathcal{C} (the decomposition must be class-preserving);
2. Decompose G until no decomposition is possible;
3. Check if all graphs obtained from the decomposition are basic graphs of \mathcal{C}.

How decomposition is used for combinatorial problem

- Vertex coloring: assignment of (as minimum possible) colors to the vertices, no adjacent vertices receive the same color
- Maximum independent set: finding set of pairwise non-adjacent vertices with maximum cardinality
- Maximum clique: finding set of pairwise adjacent vertices with maximum cardinality

coloring chromatic number : χ

max independent set independent set number: α

maximum clique clique number : ω

$$
\begin{gathered}
\text { Part 1 } \\
\text { Decomposition theorem of } \\
\text { triangle-free even-hole-free } \\
\text { (tf-ehf) graphs }
\end{gathered}
$$

Reference: Triangle-Free Graphs Signable without Even Holes [2]

Terminology: what is an even hole?

cycle

Terminology: what is an even hole?

Terminology: what is an even hole?

chordless cycle
(hole if it has length ≥ 4)

Terminology: what is an even hole?

odd hole

Terminology: what is an even hole?

A graph is even-hole-free if it does not contain an even hole as an induced subgraph.

What is triangle?

Triangle is the complete graph of three vertices.

Triangle-free even-hole-free graphs are graphs that do not contain an even-hole and a triangle as an induced subgraph.

Forbidden structure in tf-ehf graphs

theta

prism

pyramid

wheel

Figure: Truemper configurations; dashed lines represent paths of length at least 1

Every triangle-free even-hole-free graph is (theta, prism, pyramid, even wheel)-free *.
\mathcal{C} : the class of (triangle, theta, even wheel)-free graphs

[^0]
Decomposition theorem of tf-ehf graphs

Theorem (Decomposition of triangle-free ehf graphs [2)
] For any graph $G \in \mathcal{C}{ }^{\dagger}$, one of the following holds.

- G is either a K_{1}, K_{2}, a hole, or the cube.
- G has a clique cutset.
- G contains a wheel, and it can be decomposed with any arbitrarily chosen wheel.

Assumption: along the proof, we assume that the studied graph is connected.
${ }^{\dagger} \mathcal{C}$ is the class of (triangle, theta, even wheel)-free graphs

Sketch of decomposition of tf-ehf graphs

Basic graphs

Sketch of decomposition of tf-ehf graphs

Wheel decomposition

Sketch of decomposition of tf-ehf graphs

Wheel decomposition

Sketch of proof (1): Study clique cutset on the graph

Remark

Let $G \in \mathcal{C}$. Since G is triangle free, the only clique cutset that may exists in G is K_{1} or K_{2}.

Lemma (Clique cutset lemma)
If G has a clique cutset, then G is (theta, prism, pyramid)-free if and only if all blocks of the clique cutset decomposition are (theta, prism, pyramid)-free.

Implication: we may assume that our graph G does not have a clique cutset.

Proof of clique cutset lemma

- Let G be a (theta, prism, pyramid)-free graph, and C be a clique cutset in G.
- For a contradiction, suppose that there exists a block of decomposition Q containing a theta T.
- Since G is theta-free, then T must contains vertices of Q and $G \backslash Q$.
- Study how the vertices of T are positioned in Q and $G \backslash Q$. This will lead to a contradiction.
- Apply a similar analysis, by assuming G contains a prism or a pyramid.

Sketch of proof (2): Study attachment on cube

Lemma

Let $G \in \mathcal{C}$ be a graph containing no K_{1} or K_{2} cutset. If G contains a cube, then G itself is a cube.

Sketch of proof.

- Assume that G contains cube M.
- Study the attachment of vertices in $G \backslash M$ into M.
- Study what happens if all vertices in $G \backslash M$ has no neighbor in M.
- Study what happens if a vertex $x \in G \backslash M$ has ≥ 2 neighbors in M.
- Study what happens if all vertices in $G \backslash M$ have at most one neighbor in M.

Implication: we may assume that G does not have a clique cutset and the cube (i.e., (K_{1}, K_{2}, cube)-free).

Sketch of proof (3): Study attachment on hole
Lemma (Hole attachment lemma)
Let $G \in \mathcal{C}$ that contains no clique cutset, H be a hole in G. Then either:

- $G=H$;
- G contains a wheel (H, v);
- G contains a wheel $\left(H^{\prime}, y\right)$ as shown in the following figure.

Implication: we may assume that G does not have a clique cutset, and is not a hole and is not a cube.

Sketch of proof (4): Wheel decomposition

Let G be a connected triangle-free graph that contains a wheel (H, v). Let v_{1}, \ldots, v_{n} be the neighbors of v in H appearing in this order when traversing H. Then G can be decomposed with a wheel (H, v) if the following holds:

1. $G \backslash\left\{v, v_{1}, \ldots, v_{n}\right\}$ contains exactly n connected components: Q_{1}, \ldots, Q_{n}.
2. The intermediate nodes of the sector with endnodes v_{i} and v_{i+1} belong to Q_{i}, and no node of Q_{i} is adjacent to $v_{j}, j \neq i, i+1$.

Lemma (Wheel decomposition)

Let G be a (triangle, theta, even wheel)-free graph, and G is not a K_{1}, K_{2}, a hole, the cube, and G does not contain a clique cutset.
Let W be a wheel in G. Then G can be decomposed by W.
Wheel decomposition

Lemma (Wheel decomposition)

Let G be a (triangle, theta, even wheel)-free graph, and G is not a K_{1}, K_{2}, a hole, the cube, and G does not contain a clique cutset.
Let W be a wheel in G. Then G can be decomposed by W.
Wheel decomposition

Properties of wheel decomposition

- Let (H, v) be a wheel that decompose G, and $v_{i}, v_{j} \in N_{H}(v)$. Then $\left\{v, v_{i}, v_{j}\right\}$ contains exactly two connected components.

Wheel decomposition (H, v) where $N_{H}(v)=$ $\left\{v_{1}, \ldots, v_{n}\right\}$ contains n connected components.

- Every wheel in G is not "decomposed" (i.e. if W is a wheel in G, then W is contained in a block Q_{i} of the decomposition).
- If G has no clique-cutset, then every block has no clique cutset.
- If $G \in \mathcal{C}$, then every block $Q_{i} \in \mathcal{C}$.

Sketch of proof (5): After wheel decomposition

The wheel decomposition can be applied to each block of decomposition which is not a basic graph. This can be done untul in the end, no block of decomposition contains a wheel (i.e. they are all basic graphs).

This follows from the "hole attachment lemma", that says that when each block $Q \in \mathcal{C}$ does not contain any more wheel, then the block of decomposition is a hole.

This proves the "Decomposition Theorem".

Structure theorem of

 triangle-free even-hole-free
graphs

Reference: Triangle-Free Graphs Signable without Even Holes [2]

Ear

Let H be a hole. A chordless path $P=x \ldots z$ is an ear of the hole H if:

- the intermediate nodes of P are in $V(G) \backslash V(H)$;
- x and z have a common neighbor y in H;
- $(V(H) \backslash\{y\}) \cup V(P)$ induces a hole.

Structure theorem of tf-ehf graphs

Theorem
Let G be a graph that is triangle-free, not the cube, and containing no K_{1} and K_{2} cutsets and no cube. Then G is (theta, prism, pyramid)-free if and only if it can be obtained:

- starting from a hole;
- doing a sequence of good ear-addition.

Structure theorem of tf-ehf graphs

Construction: EAR ADDITION

Structure theorem of tf-ehf graphs

Construction: EAR ADDITION

Structure theorem of tf-ehf graphs

Construction: GOOD EAR-ADDITION

Structure theorem of tf-ehf graphs

Construction: GOOD EAR-ADDITION

Structure theorem of tf-ehf graphs

Construction: GOOD EAR-ADDITION

Structure theorem of tf-ehf graphs

Construction: GOOD EAR-ADDITION

Structure theorem of tf-ehf graphs

Construction: GOOD EAR-ADDITION

Structure theorem of tf-ehf graphs

Construction: GOOD EAR-ADDITION

Structure theorem of tf-ehf graphs

Construction: GOOD EAR-ADDITION

Structure theorem of tf-ehf graphs

Construction: GOOD EAR-ADDITION

Structure theorem of tf-ehf graphs

"BAD" EAR

Structure theorem of tf-ehf graphs

"BAD" EAR

even wheels

Structure theorem of tf-ehf graphs

- Structure theorem of triangle-free case [Conforti, Cornuéjols, Kapoor, Vušković (2000)]

Structure theorem of tf-ehf graphs

- Structure theorem of triangle-free case [Conforti, Cornuéjols, Kapoor, Vušković (2000)]

Structure theorem of tf-ehf graphs

- Structure theorem of triangle-free case [Conforti, Cornuéjols, Kapoor, Vušković (2000)]

Structure theorem of tf-ehf graphs

- Structure theorem of triangle-free case [Conforti, Cornuéjols, Kapoor, Vušković (2000)]

Structure theorem of tf-ehf graphs

- Structure theorem of triangle-free case [Conforti, Cornuéjols, Kapoor, Vušković (2000)]

Applications of the decomposition/structure theorems

Reference:

1. Triangle-Free Graphs Signable without Even Holes [2]
2. Structure and algorithms for (cap, even hole)-free graphs [3]

Applications of the decomposition/structure theorems

We will discuss:

1. The use of decomposition theorem for recognizing if a graph is triangle-free even-hole-free.
2. The use of structure theorem for solving combinatorial problems, such as coloring and maximum independent set, through the study of treewidth.

Recognizing if a graph in in \mathcal{C}

Input: A connected triangle-free graph G
Output: YES if G is (theta, prism, pyramid)-free, NO otherwise.
\mathcal{L} is the set of blocks

1. Step 1: If G has a K_{1}-cutset or K_{2}-cutset, set $\mathcal{L}=\{G\}$. Otherwise, decompose it with K_{1}-cutset or K_{2}-cutset, until it is not decomposable anymore. Let \mathcal{L} be the set of blocks.
2. Step 2: If every graph in \mathcal{L} has one or two nodes, is a hole or a cube, return YES. Otherwise, go to Step 3.
3. Step 3: Study every graph in \mathcal{L} that has more than two nodes, but neither a hole nor a cube. Study if the graph can be decomposed with a wheel. Return NO if a graph is not basic and cannot be decomposed by a wheel.
4. Repeat Step 2, then Step 3 for every graph that is not basic.

Treewidth (intuitively)

Tree decomposition

- Tree decomposition of G : "gluing" the pieces of subgraphs of G in a tree-like fashion
- width of $T=$ the size of the largest bag - 1
- treewidth of G : the minimum over the width of tree decomposition of G

Why treewidth is algorithmic-ally powerful?

Theorem (Courcelle, 1990)
Every graph property definable in the monadic second-order logic (MSO) formulas can be decided in linear time on class of graphs of bounded treewidth.

Some graph problems expressible in MSO:

- most combinatorial problems,
- such as: maximum independent set, maximum clique, coloring

Treewidth of tf-ehf graphs

Theorem (3)
Let G be a triangle-free even-hole-free graph, then the treewidth of G is at most 5 .

Sketch of proof.
The treewidth of a graph can be computed by applying the following properties.

Lemma

If G is a graph that is contained in a chordal graph H as a subgraph, then the treewidth of G is at most one less than the size of the maximum clique of G

Sketch of proof (continue).

- By the structure theorem, any graph $G \in \mathcal{C}$ can be formed starting from a hole and sequentially adding ear-attachment.
- Then, we can add edges to make the graph chordal.
- It can be proved that the size of the maximum clique of the chordal graph is at most 6 .
- Hence the treewidth is at most 5 .

Sketch of proof (continue).

Figure: Sketch of chordalization of a graph $G \in c C$

Most combinatorial problems on tf-ehf graphs are polynomial

Implication of treewidth

Since the treewidth is small, then by Courcelle's theorem, many combinatorial problems are poly-time solvable., such as:

- graph coloring; or
- maximum independent set

This is the end of the presentation

References

1. Even-hole-free graphs: a survey (K. Vušković, 2010)
2. Triangle-Free Graphs Signable without Even Holes (M. Conforti, G. Cornu'ejols, A. Kapoor, K. Vušković, 1996)
3. Structure and algorithms for (cap, even hole)-free graphs (K. Cameron, M. V. G. da Silva, S. Huang, K. Vušković, 2016)

[^0]: *even wheel is a wheel with an even number of spokes

